Higher-dimensional categories with finite derivation type
نویسندگان
چکیده
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalising the one introduced by Squier for word rewriting systems. We characterise this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.
منابع مشابه
Higher-dimensional normalisation strategies for acyclicity
We introduce acyclic polygraphs, a notion of complete categorical cellular model for (small) categories, containing generators, relations and higher-dimensional globular syzygies. We give a rewriting method to construct explicit acyclic polygraphs from convergent presentations. For that, we introduce higher-dimensional normalisation strategies, defined as homotopically coherent ways to relate e...
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
متن کاملPolygraphs of finite derivation type
Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he constructed finitely presentable monoids with a decidable word problem, but that cannot be presented by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type, whic...
متن کاملIdentities among relations for higher-dimensional rewriting systems
We generalize the notion of identities among relations, well known for presentations of groups, to presentations of n-categories by polygraphs. To each polygraph, we associate a track n-category, generalizing the notion of crossed module for groups, in order to define the natural system of identities among relations. We relate the facts that this natural system is finitely generated and that th...
متن کامل